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Abstract Teleconnections between lower and higher latitude regions are widely known in both the
Northern and Southern Hemispheres. To broaden our view of these teleconnections, we searched a
reanalysis data set for evidence of a teleconnection between the Arctic Oscillation (AO) and the Antarctic
Oscillation (AAO), two widely separated circumpolar phenomena. Statistical analysis of the Japanese 55-year
reanalysis data set showed significant in-phase synchronization between the AO and AAO, particularly in
October and February, with a vertical structure extending from the troposphere to the stratosphere. This
vertical structure may suggest a stratospheric control, and we did not find a significant signature indicating a
tropical ocean control. We also observed decadal-scale modulation of the synchronicity. Observational
evidence implies that the stratospheric meridional circulation may be responsible for
AO-AAO synchronization.

Plain Language Summary The Arctic Oscillation (AO) and the Antarctic Oscillation (AAO) are
dominant atmospheric variability patterns in the Northern and Southern Hemispheres, respectively. Each is
a pressure seesaw between the pole and the midlatitudes that remotely affects weather, climate, and
environment around the world. We showed interhemispheric in-phase synchronization between the AO and
AAO in October and February, and we also found decadal-scale variation of the synchronicity. Because the
vertical structure of the AO-AAO synchronization extends from the troposphere to the stratosphere,
stratospheric variations may be responsible for the synchronization. This finding of AO-AAO synchronization
points the way to a better understanding of past, present, and future pole-to-pole climatic relationships and
improvements in long-term weather forecasts.

1. Introduction

The Arctic Oscillation (AO) is the leading mode of large-scale atmospheric variations in middle to high lati-
tudes of the Northern Hemisphere (Thompson & Wallace, 1998), and its impact on extreme weather events
in the Northern Hemisphere is significantly large in all seasons (e.g., Thompson & Wallace, 2001). The
Antarctic Oscillation (AAO) is the leading mode of atmospheric variations in the middle to high latitudes
of the Southern Hemisphere (Gong & Wang, 1999; Mo, 2000), and it is known to have a two-way interac-
tion with the evolution of the ozone hole (Thompson & Solomon, 2002). The AO and AAO are thus both
scientifically and socioeconomically important. In accordance with established convention, the positive
phase of the AO or AAO indicates that sea level pressure (SLP) is lower than normal in both circumpolar
regions and higher than normal in both midlatitude regions, and the negative phase indicates the reverse
signature. Many studies have investigated the causes of long-term variations of both the AO and the AAO.
For example, the recent shift toward a more negative phase of the AO was influenced by the Arctic sea ice
reduction (e.g., Nakamura, Yamazaki, et al., 2015), and the AAO is influenced by stratospheric circulation
trends associated with anthropogenic ozone forcing (Thompson & Solomon, 2002; Thompson et al.,
2011). In general, however, causes of variations in the AO and AAO have been studied independently.
Because the AO and AAO are widely separated circumpolar phenomena, interactions or teleconnections
between them have been largely disregarded. Guan and Yamagata (2001), Lu et al. (2008), and Guan
et al. (2010) described the interhemispheric connection as a seesaw-like oscillation of mean hemispheric
surface air pressures between the Northern and Southern Hemispheres. Tang and Guan (2015) described
a polar-tropical seesaw mode, but to the best of our knowledge no one has examined synchronicity
between the AO and AAO.
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A possible driver of synchronization of midlatitude and high-latitude variations of the AO and AAO between
the two hemispheres is the variation of tropical sea surface temperature (SST). For example, remote impacts
of El Niño-Southern Oscillation (ENSO) have been observed on the weather at high latitudes in both hemi-
spheres through the Pacific-North American (e.g., Trenberth et al., 1998) and the Pacific-South American
(e.g., Karoly, 1989) teleconnection patterns. Tropical convective activity associated with the Madden-Julian
Oscillation also affects the weather at high latitudes (Naumann & Vargas, 2010; Zhou & Miller, 2005).
Modification of planetary-scale wave pathways by the stratospheric quasi-biennial oscillation (QBO) might
also affect polar vortex intensity and the resultant SLP anomalies over high-latitude regions (Holton-Tan
effect; Holton & Tan, 1980; Marshall & Scaife, 2009; O’Sullivan & Young, 1992).

Conversely, remote influences of high-latitude atmospheric variations on the tropics have also been reported.
For example, the changes in midlatitude circulation that accompany the AO can affect tropical convective
activity and trigger an El Niño event (e.g., Chen et al., 2017; Nakamura et al., 2006, 2007; Oshika et al.,
2014). Moreover, intensification of the stratospheric meridional circulation (i.e., the Brewer-Dobson circula-
tion) intensifies rapid tropical convective cloud formation during sudden stratospheric warming (SSW) events
in both the Southern (Eguchi & Kodera, 2007) and Northern (Kodera et al., 2011) Hemispheres. SSW events in
the Northern (Southern) Hemisphere often accompany the negative phase of the AO (AAO; e.g., Baldwin &
Dunkerton, 2001; Gerber et al., 2010). The enhancement of tropical convective activity by extratropical
forcing from one hemisphere might influence in turn the extratropical atmosphere of the opposite hemi-
sphere, because the large latent heat release associated with tropical convective clouds is widely recognized
as a source of tropical influence on the high-latitude atmosphere.

From these lines of evidence suggesting a remote connection between the tropics and high-latitude regions
of both hemispheres, it is reasonable to infer that a physically based AO-AAO synchronicity might also exist.
The next step, therefore, is to examine this inference by looking for synchronicity between the AAO and AO.

The principal purpose of the present study is to detect this inferred synchronization in a reanalysis data set.
Then we examined the seasonal dependency and decadal-scale modulation of the detected synchronicity as
well as the interhemispheric-scale meridional-vertical structures associated with AO-AAO synchronization.
Clarifying themechanism of the synchronization is beyond our scope, but wemake a discussion on a possible
physical process.

2. Data and Methods

We used the Japanese 55-year reanalysis (JRA-55) product for 1979–2016 (Kobayashi et al., 2015). Following
Gong and Wang (1999), we defined AO and AAO indices simply as the normalized monthly mean difference
in zonal mean SLP between the latitudes of 65° and 40° in each respective hemisphere (i.e., SLP at 40°S or N
minus SLP at 65°S or N, where a positive [negative] index value indicates a low [high] SLP anomaly in the polar
region). The AO index defined by Gong andWang (1999), which the present paper used, is almost identical to
an original index by an empirical orthogonal function (EOF) analysis defined by Thompson and Wallace
(1998) in winter. Correlation coefficients between the two indices are over 0.7 in winter. The EOF analysis
tends to capture characteristics of the winter patterns because of their largest variability during winter.
Present study compares between opposite season in the Northern and Southern Hemispheres, that is,
between winter and summer, or between spring and autumn. We thus use the simple index defined by
Gong and Wang (1999). We used linear regression and correlation analyses of the data to identify synchroni-
city between the AO and AAO. We also calculated running correlation coefficients within a 25-year window to
examine decadal-scale modulation of the synchronicity. We confirmed that the decadal modulation did not
depend on the length of the window. An AO + AAO index is additionally used. The definition of the AO + AAO
index is the sum of the normalized AO index and the normalized AAO index. Large absolute value of the
index tends to be large when both the AO and AAO are synchronized.

Singular value decomposition (SVD) analysis, which statistically isolate significant connection between two
pieces of multivariate variations, is widely used for seeking large-scale atmosphere-ocean connection (e.g.,
Nakamura, Oshika, et al., 2015; Wallace et al., 1992). Present study applies SVD analysis to detect covariant
meridional-vertical structures involving the troposphere and stratosphere. Because SVD needs to prepare
two field variables, we applied to monthly mean anomaly fields of zonal mean geopotential height poleward
of 40° at altitudes between 1,000 and 10 hPa in the Southern and Northern Hemispheres.
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3. Evidence of AO-AAO Synchronicity in the JRA-55
Data Set

We first calculated correlation coefficients between the monthly mean AO
and AAO indices (Figure 1, right column). The correlation coefficients for
February and October during the entire study period (1979–2016), 0.41
and 0.36, respectively, were statistically significant at the 95% level (t test).
Moreover, the 25-year running correlations (Figure 1, color gradations)
show that during some subperiods, the correlation coefficients in
February and October exceeded 0.5. We further executed 19-, 21-, and
23-year running correlation analyses, and overall correlation patterns as
shown in Figure 1 are also seen. Here positive correlations indicate that
SLP was lower than normal in both circumpolar regions and higher than
normal in both midlatitude regions, and negative correlations indicate
the reverse. Thus, in these 2 months, the polarities of the AO and AAO
tended to be in phase. The interannual time series of AO-AAO synchroni-
city in February and October (Figure 2) clearly shows in-phase synchroni-
zation between the AO and AAO, especially during the subperiod when
the correlation coefficient was highest. High correlation subperiods were
between 1980s and the beginning of 2000s. Notably, this coherent varia-
tion occurs on an interannual timescale and is not due to a long-term
trend. In February, the correlation was mostly positive during the study
period, and the maximum correlation of 0.51 was observed during
1980–2004. In October, the maximum correlation of 0.56 was observed
during 1981–2005. These maximum correlations were statistically signifi-
cant at the 99% confidence level.

We next examined connectivity between the Northern Hemisphere and the Southern Hemisphere by apply-
ing SVD analysis to the 25-year periods with the maximum correlation between the indices. The monthly
mean homogeneous regression map of the first SVD mode (SVD1) for the Southern Hemisphere in
February showed a strong AO signature in the Northern Hemisphere: that is, strongly negative values in

Arctic latitudes and strongly positive values in midlatitude regions
(Figure 3, top left). In the map for the Northern Hemisphere, we observed
an AAO signature, that is, negative values over the Antarctic region and
positive values in the midlatitudes of the Southern Hemisphere (top cen-
ter). Because SVD1 shows the largest covariant pattern between two fields,
the appearance of AO and AAO signals in both homogenous maps sig-
nifies AO-AAO synchronicity. In other words, geostrophic westerlies that
are stronger (weaker) than normal tend to blow synchronously in both
hemispheres. Furthermore, the AO and AAO signals are not confined to
the troposphere but extend into the stratosphere; therefore, as is often
observed during SSW events, stratospheric variationmay influence the tro-
posphere. The interannual variations of the normalized expansion coeffi-
cients for the Northern and Southern Hemispheres in February (Figure 3,
upper right) are clearly synchronized with each other, and SVD1 explained
53.0% of the squared covariance fraction. Correlation coefficient of the
expansion coefficients for the Northern Hemisphere (green curves of
Figure 3) with the AO index (red curves of Figure 2) are 0.61 and 0.76 in
February and October, respectively.

SVD1 also showed in-phase synchronicity, with the structure extending
into the stratosphere, between the AO and AAO in October (Figure 3,
lower panels). The interannual variations of the expansion coefficients
for the Northern and Southern Hemispheres were also significantly corre-
lated in October, although the correlation was weaker than the correlation

Figure 1. Correlations between the Arctic Oscillation (AO) and Antarctic
Oscillation (AAO) indices. The column on the right shows the correlation
coefficients between monthly mean AO and AAO indices for each month
during the whole study period (1979–2016). The correlation coefficients
shown in bold are statistically significant at the 95% level (t test). The color
scale shows 25-year running correlation coefficients between the AO and
AAO indices. The years shown on the horizontal axis indicate the center of
each 25-year window in which the correlation was calculated. The stars
indicate the 25-year period with the highest correlation coefficients for
February (0.51) and October (0.56).

Figure 2. Interannual Arctic Oscillation (AO)-Antarctic Oscillation (AAO)
synchronicity. Monthly mean values of the AAO and AO indices in February
(top) and October (bottom). The vertical axis shows the normalized values of
the indices divided by the individual standard deviations. The thick lines
indicate the 25-year subperiod in each month with the highest correlation
coefficient (indicated by the star symbol in Figure 1).
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of the SLP-based indices. SVD1 explained 52.4% of the squared covariance fraction. Correlation coefficient of
the expansion coefficients for the Southern Hemisphere (black curves of Figure 3) with the AAO index (red
curves of Figure 2) are 0.90 and 0.93 in February and October, respectively.

Interestingly, in both February and October, the SVD1 pattern exhibited an asymmetric vertical structure.
In February the activity center of the AO signal is in the stratosphere and that of the AAO is in the lower
stratosphere to upper troposphere (Figure 3, upper panels). Conversely, in October the activity center of
the AAO signal is in the stratosphere and that of the AO is in the lower stratosphere to upper troposphere
(Figure 3, lower panels). Thus, the dominant signal of the winter hemisphere is in the stratosphere,
whereas that of the summer hemisphere is in the troposphere. Because SSW events occur more often
in February and October in the Northern and Southern Hemispheres, respectively, than in the other
months, this asymmetric structure may indicate that the remote connection between the Northern and
Southern Hemispheres originates from stratospheric variations such as SSW events that occur during
the active season.

We next show zonal mean regression fields on the meridional vertical plain with AO and AAO indices in
February and October in order to confirm the pattern extracted by SVD can be reproduced by these simple
regression analyses. When we examined zonal-mean regression fields of zonal-mean geopotential height
against the AO and AAO indices in February on the meridional-vertical plane (Figure 4, upper panels), we
observed two positive and negative anomaly pairs, that is, the AAO and AO signatures, in the troposphere
of both hemispheres. In October, on the regression map against the AAO index (Figure 4, lower left), we
observed a clear AAO signature in the troposphere of the Southern Hemisphere that extended into the stra-
tosphere. Further, the positive anomaly in the Southern Hemisphere extended into the lower stratosphere in
the equatorial region and then descended into the troposphere of the Northern Hemisphere; thus, it formed
an arch-like structure over the equatorial troposphere. A positive and negative anomaly pair, that is, the AO
signature, was also seen in the troposphere of the Northern Hemisphere in October (Figure 4, lower left). On
the regression map against the AO index, negative anomalies were seen in the circumpolar region in the
Southern Hemisphere (Figure 4, lower right).

Figure 3. Zonal-mean geopotential height pattern and year-to-year variations, derived from the first singular value
decomposition (SVD) mode. SVD was applied to zonal-mean monthly mean geopotential heights in February (upper
panels) and October (lower panels). (Left column) Homogeneous regressionmaps for the Southern Hemisphere. Horizontal
and vertical axes are latitude and altitude, respectively. (Center column) Homogeneous regression maps for the Northern
Hemisphere. In each month, areas within the green boxes in the Southern and Northern Hemispheres were paired
for the SVD calculation. The contour/color shading interval is 10 m, and red and blue colors indicate positive and negative
values, respectively. (Right) Time series of the normalized expansion coefficients divided by the standard deviation
for the Southern Hemisphere (black curve) and the Northern Hemisphere (green curve). The squared covariance fraction
(SCF) and correlation coefficient are shown in the upper left and upper right corners, respectively.
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4. Possible Causes of Synchronicity Between the AO and AAO

The principal aim of this study was to establish that synchronicity existed between the AO and the AAO.
Although clarifying the mechanism is beyond our scope, we also considered possible mechanisms of syn-
chronicity. Our statistical analyses showed that variations of the AO and AAO were in phase during
February and October. The correlation coefficients between seasonal mean AO and AAO indices were weaker
than those of monthly mean indices. This seasonal dependence might be key to understanding the mechan-
ism of AO-AAO synchronicity.

The potential of tropical oceanic variations such as ENSO to affect the atmosphere over both poles simulta-
neously is large. It is natural, however, to consider that forcing by a long-lasting event such as ENSO would be
more persistent than forcing by a short-term event. If the dominant influence on AO-AAO synchronicity was
of tropical origin, then the synchronicity should continue for a few months or longer. Contrary to this expec-
tation, correlations between the AO and AAO indices were more highly positive when monthly mean values
were compared than when 3-month means were compared. In fact, when we regressed the SST anomaly
against the AO + AAO index, which has a large absolute value when they are synchronized, we found no
significant signature in the tropics in February, and only a very weak La Niña-like signature in October
(Figure S1 in the supporting information). Furthermore, an atmospheric general circulation model simulation
that did not take account of interannual variations of global SST (Ogata et al., 2013) could partly represent the
AO-AAO synchronicity in October (Figure S2). These results suggest that tropical oceanic SST variation is of
little importance, at least with regard to the in-phase synchronicity of the AO and AAO. By the same logic,
the QBO, because its period is much longer than a month, is unlikely to be a cause of the synchronicity. In
fact, regression of the zonal-mean zonal wind field against the AO + AAO index also showed no significant
anomalies in the tropical stratosphere (Figure S3).

Dynamical variations in the polar region have been shown to affect tropical convective activity; for example,
atmospheric convective activity in the tropical region may be controlled via changes in the stratospheric

Figure 4. Meridional-vertical patterns of zonal-mean geopotential height regressed against the (left panels) Antarctic
Oscillation (AAO) and (right panels) Arctic Oscillation (AO) indices. Horizontal and vertical axes show latitude and
altitude, respectively. The upper and lower panels show results for February and October, respectively. The contour interval
is 10m, and color shading indicates the level of statistical significance. Red and yellow shades indicate positive correlations,
and blue shades indicate negative correlations.
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meridional circulation associated with SSWs (Eguchi & Kodera, 2007; Kodera et al., 2011) or via tropospheric
eddy dynamics associated with the AO (Chen et al., 2017; Oshika et al., 2014). Because the large latent heat
release that accompanies tropical convective clouds is widely recognized as the mechanism of a tropical
influence on the high-latitude atmosphere, tropical convective cloud activity that has been influenced by
extratropical dynamical variations might mediate the propagation of extratropical signatures from one pole
to the opposite pole. These considerations suggest that a sporadic extratropical event might be responsible
for the AO-AAO synchronization that we detected. A SSW event is a likely candidate for this sporadic event.
The vertical structure of the anomalous geopotential height pattern of AO-AAO synchronicity is asymmetric
between the two hemispheres: In February, signals are stronger in the stratosphere of the Northern
Hemisphere, and in October, they are stronger in the stratosphere of the Southern Hemisphere, in each case
compared with the signal strength in the opposite hemisphere (Figure 3). The signals extending to the strato-
sphere, the so-called Northern Hemisphere annular mode/Southern Hemisphere annular mode pattern, are
closely related to SSW occurrences. SSW events often accompany the negative phase of the AO (Baldwin &
Dunkerton, 2001). An SSW that is accompanied by intensification of stratospheric meridional circulation
(i.e., Brewer-Dobson circulation) remotely controls tropical convective cloud activity (Eguchi & Kodera,
2007; Kodera et al., 2011). This SSW-controlled tropical cloud activity might further influence the extratropical
atmosphere in the opposite hemisphere.

We note again that the seasonality of the AO-AAO synchronicity has an important implication.
Climatologically, February is the month with the most SSW event activity in the Northern Hemisphere (e.g.,
Hu et al., 2014). Surface anomalies due to downward influences of SSW events also appear in February.
The frequent occurrence of SSW events in February might account for the large correlation between the
AO and AAO in that month. Similarly, the largest variability in polar vortex intensity in the Southern
Hemisphere is observed in October. The year 2002 is illustrative. A SSW event was observed in the
Southern Hemisphere in 2002 (e.g., Eguchi & Kodera, 2007), and the negative phases of the AO and AAOwere
also strongly synchronized in that year (Figure 2). In late autumn and early winter in 2002, it was extremely
cold over the midlatitude Northern Hemisphere, in particular over Europe and East Asia. Besides, Arctic sea
ice in late autumn and following winter was higher than normal, and the high ice condition was associated
with negative phase of AO (Ogi & Wallace, 2007). These lines of inference lead us to consider that the AAO
and AO may be linked via the stratosphere. The AO-AAO connections in the February and October do not
look symmetric in the seasonal march. From February to October, we have 8 months whereas from
October to February we have 4 months. Interestingly, the variance of the stratospheric polar night jet in indi-
vidual hemispheres are not symmetric: The peak period in the Northern hemisphere is in January or February,
which corresponds to the occurrence of SSW, while in the Southern Hemisphere, the peak is in October or
November (Figure S4). Therefore, the stratosphere-troposphere connection may tend to appear in these
months, in which AO-AAO synchronization appears. QBO could be another major candidate of a cause of
the interhemispheric synchronization, because of its correlation to the stratospheric polar vortex variations
well known as Holton-Tan effect (Holton & Tan, 1980). However, considering very low stratospheric variations
in the summer hemisphere (Figure S4), there is difficulty to apply the QBO-polar vortex relationship to the
interhemispheric synchronicity in the troposphere. In the next step, it should be considered that how the
stratospheric signature propagates the tropospheric summer hemisphere. It is known that interhemispheric
connection exists in the mesosphere (e.g., Kornich & Becker, 2010), in which the winter hemisphere has an
influence on the summer hemisphere. This interhemispheric mesospheric process might be another interme-
diator for the AO-AAO synchronization in the troposphere and stratosphere. However, we consider that
downward influence in the summer hemisphere unlikely occurs because the variance of the summer strato-
sphere is small (Figure S4).

5. Summary

This study confirmed the existence of in-phase synchronization between the AAO and AO indices in February
and October on an interannual timescale. In both hemispheres, lows are tend to be in circumpolar regions
simultaneously, whereas the highs tend to be in the midlatitude regions and vice versa. In other words, stron-
ger than normal geostrophic westerlies tend to blow synchronously in both hemispheres, or weaker than
normal geostrophic westerlies tend to blow in both hemispheres. Therefore, air masses in the circumpolar
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regions of both hemispheres move simultaneously and in phase from higher to lower latitudes, or from lower
to higher latitudes. The synchronization in other months, however, is much weaker.

In this study, we did not try to definitively identify the mechanism of the synchronization, but we offer the
following considerations. Tropical oceanic variations such as ENSO are apparently of little importance to
the AO-AAO synchronicity, although tropical variations are known to be a driver of high-latitude phenomena.
However, stratospheric dynamics related to SSW events may provide a bridge across the tropics between
high-latitude regions of the two hemispheres. In addition, the results of an atmospheric general circulation
model simulation, albeit one that was not specifically related to this study, support the observational evi-
dence that tropical variations are not important (see the supporting information). In the future, a modeling
study with a focus on the stratospheric role in AO-AAO synchronicity should be conducted.
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